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Abstract

I present a model where work implies social interactions and the spread of a disease

is described by an SIR-type framework. Upon the outbreak of a disease reduced social

contacts are decided at the cost of lower consumption. Private individuals do not internal-

ize the effects of their decisions on the evolution of the epidemic while the planner does.

Specifically, the planner internalizes that an early reduction in contacts implies fewer in-

fectious in the future and, therefore, a lower risk of infection. This additional (relative to

private individuals) benefit of reduced contacts implies that the planner’s solution feature

more social distancing early in the epidemics. The planner also internalizes that some

infectious eventually recover and contribute further to a lower risk of infection. These

mechanisms imply that the planner obtains a flatter infection curve than that generated

by private individuals’ responses.
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1 Introduction

Why should social distancing be mandatory during an epidemic? In other words why would

individual incentives lead to less social distancing than is socially optimal? These are the

questions I discuss in this paper.

I develop a model where ex-ante identical individuals value consumption and leisure and receive

income from work. Both work and leisure entail social interactions in such a way that social

interactions are increasing (in a sense to be made precise below) in work time. I do not model

savings nor testing, and I consider the wage rate to be exogenous.

I use an SIR-type description of the evolution of the epidemic. Specifically, I consider four

compartments of the population: the susceptible, the infectious, the symptomatic and the re-

covered. I assume that both susceptible and infectious are asymptomatic. Thus, their behavior

is the same. Infectious individuals become symptomatic after an incubation period of random

length. Symptomatic individuals are quarantined and face, each period, a probability of dying

and a probability of recovering. Recovered individuals cannot become infectious again. The

socially- and economically-active population is the union of susceptible, infectious and recovered

individuals.

A key object of interest is the contact rate: the number of contacts made by an average

individual with other individuals in a period. In SIR-type models the contact rate, together

with the relative sizes of the socially-active compartments of the population, dictate the flow

of infectious each period. The contact rate is the choice variable in this analysis. At the

individual’s level a “low” contact rate (i.e. social distancing) implies a “low” risk of infection at

the cost of “low” consumption. The model features heterogeneous contact rates since susceptible

and infectious individuals on the one hand, and recovered individuals on the other hand, do

not behave similarly. An SIR-type model with heterogeneous (albeit exogenous) contact rates

can be found in Brauer (2008b).

A contribution of the model is the description of the contact rate. From the perspective of

individuals, the contact rate is the mean λ of a Poisson distribution governing the number of

meetings with other individuals in a period. I assume that λ is tied to individual work/leisure

decisions in such a way that is is increasing in work time and consumption, i.e. working

individuals are more likely to meet other individuals. Conversely, individuals seeking to reduce

their exposure to others, need to reduce their labor supply and, thereby, their consumption.

The law of large number implies that in the aggregate the number of contacts by an average

individual is λ.
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My focus is on the differences between the individually-optimal and the socially-optimal re-

sponses to the epidemic. There are two sources of differences. The first is that the planner

internalizes the effect of the contact rate on the evolution of the disease over time. Individuals

take this as given. The second is that the planner internalizes the effect of the contact rate on

the number of meetings and on the probability that any single meeting involves an infectious.

Individuals takes the latter as given—Section 2 describes this formally.

Results

I simulate a calibrated version of the model. The planner internalizes that lowering the contact

rate—hence work and consumption—early in the outbreak implies a low stock of infectious

later. This is utility enhancing since it implies that asymptomatic individuals are less likely to

incur the cost of becoming sick and/or die in the future. Private individuals do not internalize

this benefit of a low contact rate. Thus, the planner optimally chooses a lower contact rate,

i.e. more social distancing, than individuals would choose early in the epidemics. Later in

the epidemics, the planner raises the contact rate more than individuals would, because the

planner internalizes that: (i) with a lower stock of infectious a higher contact rate does not

imply a higher flow of infections; and (ii) some infectious eventually recover, and contribute

to a reduction of the risk of infections for all. In sum the planner uses the contact rate as an

instrument to reach herd immunity which is utility enhancing because it implies a low (or zero)

risk that asymptomatic individuals become sick and/or dies.

A lesson from these simulations is that social distancing should be mandated early in an epi-

demic because individuals, left to their own devices, do not internalize all the benefits of social

distancing.

Literature

There is a a growing list of papers on the “economics of the COVID-19 crisis,” for lack of a better

term. Garriga et al. (2020) give an organized literature review. I provide a (non-exhaustive)

list of relevant papers in the reference section below.

Jones et al. (2020), among others, is close in spirit to the work I present: The authors analyze the

differences between private and public incentives to implement mitigation strategies during the

epidemic. They find, as I do, that the planner’s incentives to mitigate—that is to impose social-

distancing measures—early in the pandemic are stronger than private individual’s. Differences

between my approach and that of Jones et al. (2020) is the modeling of contacts between
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individuals, and the emphasis on a dynamic incentive for the planner that is not shared by

private individuals.

Garibaldi et al. (2020) also emphasize the difference between private and socially optimal solu-

tions in a SIR-type model. Their model does not feature asymptomatic infectious individuals,

but it features the medical congestions generated by large number of infectious individuals.

They too find that private individuals restrict their social contacts to reduce the probability

of an infection, but not enough compared with what the social optimum prescribes. They

emphasize static and dynamic externalities as I do in Section 2.4.2.

The combination of SIR-type modeling and an economic framework can be found in many

other recent papers such as Eichenbaum et al. (2020a) or Alvarez et al. (2020). These papers,

including my own, face the following difficulties. First, on the “epidemiological front:” the

COVID-19 epidemic is recent and key epidemiological features of the virus may not yet be

well-known and/or widely accepted. It follows that (i) there is no such thing as a “standard”

model of the COVID-19 epidemic; (ii) different authors will emphasize different epidemiological

aspects (e.g. the presence, or not, of asymptomatic carriers; vaccines that may, or not, affect

the transmission of the virus; the importance, or not, of age/gender/race/location/type-of-

work heterogeneity, etc...); and (iii) the empirical values of the key epidemiological parameters

of the model may not yet be well-known and/or reasonably reduced to a single value (e.g. the

incubation period). Second, on the “economic front:” the COVID-19 epidemic is so disruptive

to every aspect of the World’s economic life that one is bound to choose to model only limited

aspects of the economy (e.g. should it be the labor markets, or the financial markets or should

the focus be on international trade? or on a closed economy? etc...)

The choices I made in this paper are to emphasize the role of asymptomatic carriers, to abstract

from ex-ante heterogeneity, and to assume that economic activity is associated with social

interactions. My modelling of the contact rate as the mean of a Poisson distribution allows for

an easy distinction between an individual’s contact rate and the aggregate contact rate. It thus

reveals clearly the difference of incentives between the planner and individuals.

2 Model

2.1 Population dynamics

Time is discrete. The economy is populated by a large number of ex-ante a priori identical

individuals. I denote the population size by P in a given period, and by P ′ in the following
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period—I use a ′ (prime) to denote next period’s value for any object in the model. Upon the

outbreak of a disease the following compartmentalization of the population can be devised.

1. There is a group of susceptible individuals denoted PS and a group of infectious but

asymptomatic individuals, PI . Since members of PS and PI are asymptomatic, they do

not know to which group they belong and their behavior, which I will describe in Section

2.4, is identical.

2. Members of the infectious group become symptomatic with probability σ each period. The

size of the symptomatic population is denoted by PM—M stands for the Medical care

they may require. I assume that members of PM are quarantined and do not participate

in social activities.

3. Members of the symptomatic population die with probability γ or recover with probability

ρ, such that γ+ρ ≤ 1. The size of the recovered population is PR. I assume that members

of the recovered population may not become infectious again.

I refer to PS + PI as the asymptomatic population. I refer to members of PR as the recovered

population. The socially-active population is PS + PI + PR.

Let Λ denote the number of contacts—the contact rate—made by the average member of PS

or PI in a period. Let ΛR denote the contact rate of the average member of PR. I discuss

the determination of Λ and ΛR in Section 2.4. A susceptible individual meeting an infectious

individual becomes infectious with probability φ. I show in Appendix A that the flow of (new)

infectious in a given period is

new infections = φΛPS
PI

PI + PS + PRΛR/Λ
. (1)

The term ΛPS is the number of meetings involving susceptible individuals in a period. The

fraction PI/(PI + PS + PRΛR/Λ) indicates the probability that a meeting is with an infectious

individual. Note that, if Λ = ΛR, that is if all individuals have the same contact rate, the prob-

ability of meeting an infectious is the proportion of infectious in the socially-active population.

If recovered individuals have a relatively higher meeting rate than others, i.e., if ΛR/Λ > 1, the

probability of meeting an infectious is lower, all else equal.
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The laws of motion for the various compartments of the population are

P ′S = PS − φΛPS
PI

PI + PS + PRΛR/Λ

P ′I = PI (1− σ) + φΛPS
PI

PI + PS + PRΛR/Λ

P ′M = PM (1− ρ− γ) + σPI

P ′R = PR + ρPM

By construction, the total population is the addition of each compartment: P = PS+PI+PM +

PR. It follows that P ′ = P − γPM . I use lower cases to represent population shares: s = PS/P,

i = PI/P , etc... The dynamics of population shares is then

s′ = S(s, i, r,m,Λ) = (1− γm)−1

[
s− φΛ

si

i+ s+ rΛR/Λ

]
(2)

i′ = I(s, i, r,m,Λ) = (1− γm)−1

[
i (1− σ) + φΛ

si

i+ s+ rΛR/Λ

]
(3)

m′ = M(i,m) = (1− γm)−1 [m (1− ρ− γ) + σi] (4)

r′ = R(r,m) = (1− γm)−1 [r + ρm] . (5)

Note that PS, PI , s, i, etc... are stock variables while Equation (1) describes a flow. Similarly,

the flow of symptomatic in a period is σPI , the flow of recovered is ρPM , etc...

This description of population dynamics is standard in discrete-time versions of SIR-type models

in epidemiology—see Brauer (2008a) for a description of these models. The typical dynamics

of an SIR-type model is as follows. At the start of an epidemic almost all the population is

in the susceptible compartment and a small fraction is exogenously assigned to the infectious

compartment. The stock of susceptible only decreases over the course of the epidemic, and the

stock of recovered only increases. The stock of infectious and symptomatic exhibit ∩-shape

trajectories. The tipping-point for the stock of infectious occurs when the flow of infectious

equals the flow of symptomatic. This tipping point is certain to obtain because, as the stock

of susceptible decreases, the flow of infectious eventually decreases. At some point, therefore,

the flow of infectious is offset by the flow of symptomatic. Similarly, the tipping point for the

stock of symptomatic occurs when the flow of symptomatic is eventually offset by the flow of

recovered and death.

I conclude this section by a remark on the flow of infectious described by Equation (1): This flow

is increasing in the contact rate and decreasing in the population of susceptible and infectious.

It follows that a “high” contact rate does not imply a “high” flow of infectious when the stock

of susceptible and/or the stock of infectious are “low” enough. I will refer to that observation
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when I discuss the behavior of the model in Section 3.2.

2.2 Preferences

The disease is the only cause of death, i.e. conditional on not dying from it, individuals are

infinitely-lived. They are endowed with 1 unit of time per period. The utility index is

Ũ(c, `) = ω ln (c) + (1− ω) ln (`)

where c is consumption and ` is leisure time. I assume an individual’s contact rate to depend

on work and leisure time:

λ = λw(1− `) + λ`` ⇔ ` =
λw − λ
λw − λ`

, (6)

where λw and λ` are positive parameters such that λw > λ`: one is more likely to meet others

at work than off from work. Work time is thus increasing in an individual’s contact rate, and

leisure time is decreasing. An individual’s budget constraint is

c = 1− `, (7)

where the wage rate is exogenous, constant and normalized to 1. Under these assumptions an

individual’s decision can be described either as a time allocation decision, i.e. a choice of leisure

time, implying work, consumption and a contact rate; or it can be described as the choice of a

contact rate, i.e. a decision to be more or less “social,” implying work, leisure and consumption.

I adopt the later approach. Given (6) and (7), the preferences over (c, `) can be equivalently

represented by the the function U :

U(λ) = ω ln (λ− λ`) + (1− ω) ln (λw − λ) . (8)

This representation of contacts, work and leisure is stylized for simplicity. My goal is to represent

a tradeoff between activities implying different intensity of contacts such that, at the same time,

there is an economic cost associated with choosing the activity generating the least contacts.

Individuals working at home may not be adequately represented by this model since they can,

at the same time, work and experience fewer contacts. A possible extension of the model would

be to allow for more activities, including work from home, each with their activity-specific

contact rate.
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2.3 The probability of remaining asymptomatic

The number of meetings an individual has in a period is a random variable, Z, following a

Poisson distribution with mean given by the individual’s contact rate, P(z, λ) ≡ Pr (Z = z) =

λze−λ/z! In Section 2.1 I defined Λ as the contact rate of the average member of PS or PI . I

distinguish λ from Λ: the former is a choice by an individual taking the latter as given. Since

all susceptible and infectious individuals are identical the following consistency condition must

hold:

λ = Λ. (9)

By the law of large numbers, the total number of meetings induced by susceptible individuals

is ΛPS, and the flow of new infections in a period is, indeed, given by Equation (1).

I now define the probability that an asymptomatic individual remains asymptomatic at the end

of the period. Let Q(λ,Λ) denote this probability for an asymptomatic with contact rate λ

when the average contact rate of asymptomatic individuals is Λ. Given Λ, the probability that

any meeting is with an infectious individual is

ι(Λ) =
i

i+ s+ rΛR/Λ
. (10)

The probability of being infected in one meeting is ι(Λ)φ, i.e. the probability that the meeting

is with an infectious multiplied by the probability that this meeting ends with an infection.

The probability of not becoming infected after z meetings is then (1− ι(Λ)φ)z. It follows that

the probability of not becoming infected in a period is

π(λ,Λ) =
∞∑
z=0

P(z, λ)(1− ι(Λ)φ)z = e−λι(Λ)φ. (11)

Then

Q(λ,Λ) =
i

i+ s
(1− σ) +

s

i+ s
[π(λ,Λ) + (1− π(λ,Λ)) (1− σ)] ,

where the first term is the probability of being infectious and not developing symptoms—recall

that asymptomatic do not know whether they are susceptible of infectious. The second term is

the probability of being susceptible and not developing symptoms. The latter, in brackets, is

the probability of not becoming infected or becoming infected and not developing symptoms.

Some explanations are necessary. I assume a form of bounded rationality for individuals: they

do not keep track of the number of realized contacts in a period. The contacts that could lead to

an infection during a day are not all “planned meetings” or “conversations” easily remembered.

They may include people “met” in an elevator or in a waiting line, a clerk in a store or a waiter
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at a restaurant etc... Thus, it is sensible to assume that individuals do not keep a record of

them. This assumption voids the heterogeneity that develops during a period since different

individuals may experience different number of contacts even though they may have chosen the

same λ. Under the bounded rationality assumption, asymptomatic individuals are identical at

the start of any period, and consider i/(i+ s) as their best estimate for the probability of being

infectious.

It is worth noting that this bounded rationality assumption is for simplicity. Absent this as-

sumption, the model would feature heterogeneity in the history of contacts for each individual.

Individuals would also have to form beliefs about being susceptible or infectious, and would up-

date them each period after observing their realized contacts. Such model would be significantly

more complicated.

The expression for Q(λ,Λ) simplifies to

Q(λ,Λ) =
i

i+ s
(1− σ) +

s

i+ s
(1− σ (1− π(λ,Λ))) . (12)

Note that the first component of Q(λ,Λ) does not depend on λ. When the proportion of

infectious is large an asymptomatic assesses the probability of being infectious to be large

and the probability to remain asymptomatic to be mostly determined by the duration of the

incubation period, regardless of attitude toward social interactions.

2.4 Value functions

Recovered individuals are immune and are aware of it. Their value is therefore

VR = max
λ∈[λ`,λw]

U (λ) + βVR (13)

where β is a subjective discount factor. As indicated earlier, I use ΛR to denote the optimal

choice of recovered individuals: ΛR = ωλw + (1− ω)λ` and VR = U (ΛR) + βVR.

Symptomatic individuals are not socially active. Their value is

VM = δ + β [(1− γ)(1− ρ)VM + (1− γ)ρVR + γ∆] . (14)

In this expression δ is the flow of utils in the current period. The continuation value comprises

three terms. These are, in order: (i) the individual does not die and remains symptomatic;

(ii) the individual does not die and recovers; and (iii) the individual dies. The parameter ∆
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indicates the “(dis)utility of death.”

2.4.1 The individual’s solution

The optimization problem for an asymptomatic individual is

VA(s, i, r,m) = max
λ∈[λ`,λw]

U(λ) + βQ(λ,Λ)VA(s′, i′, r′,m′) + β (1−Q(λ,Λ))VM (15)

s.t. Equations (2)–(5).

Let λ∗ denote the solution. At an interior λ∗ satisfies the following first-order condition

Uλ(λ
∗) + βQλ(λ

∗, λ∗) [VA(s′, i′, r′,m′)− VM ] = 0. (16)

Equation (16) indicates that, at an optimum, the marginal cost of a reduction in the contact

rate is offset by the marginal value of remaining asymptomatic. The latter is the product of

the marginal effect of the contact rate on the probability of remaining asymptomatic and the

value of being asymptomatic over being symptomatic.

A few observations are in order at this stage. First, the marginal probability, Qλ, is evaluated

at (λ∗, λ∗) to impose consistency between individual and aggregate behavior. Second, Equation

(16) is derived under the assumption that: (i) An asymptomatic individual does not internalize

the effect of his decisions on the evolution of the disease; (ii) An asymptomatic individual does

not internalize the effect of his decisions on the probability that any given meeting be with an

infectious, i.e. the individual takes Λ as given.

It is convenient to write (16) as

Uλ(λ
∗) = −β s

i+ s
σπλ(λ

∗, λ∗) [VA(s′, i′, r′,m′)− VM ] , (17)

where πλ(λ
∗, λ∗) = −ι(λ∗)φe−λ∗ι(λ∗)φ < 0. The left-hand side of (17) equals 0 at λ = ΛR since

ΛR is the solution of problem (13). It is immediate that Uλ(λ) → +∞ as λ → λ`. The right-

hand side of (17) is decreasing in λ but it is finite at λ = λ` and strictly positive at λ = ΛR as

long as VA > VM .1 It follows from these observations that the individual’s solution is such that

λ∗ ≤ ΛR.

It follows from Equations (11) and (12) that π(λ,Λ)
∣∣
i=0

= 1 and Q(λ,Λ)
∣∣
i=0

= 1. Thus, at the

end of an epidemic, when the proportion of infectious reaches 0, the probability of remaining

1If there existed a state in which VM ≥ VA, the “disease” would not be a nuisance. The condition VA > VM
can be guaranteed to hold by appropriately choosing the parameters δ and ∆.
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asymptomatic reaches 1. Furthermore, Equations (2)-(5) reveal that: the proportion of suscep-

tible remains constant at a level (possibly 0) which I label sLR; the population of symptomatic

converges to 0; and the population of recovered converges to a constant (possibly 1) which I

label rLR. Thus, the state of the population is constant. In that case problem (15) reads

VA(sLR, 0, rLR, 0) = max
λ∈[λ`,λw]

U (λ) + βVA(sLR, 0, sLR, 0).

This is the same as Equation (13). Thus, VA(sLR, 0, rLR, 0) = VR, and the long-run value of λ∗

is ΛR.2

2.4.2 The planner’s solution

The planner solves an optimization problem similar to that of an individual:

VA(s, i, r,m) = max
Λ∈[λ`,λw]

U(Λ) + βQ(Λ,Λ)VA(s′, i′, r′,m′) + β (1−Q(Λ,Λ))VM (18)

s.t. Equations (2)–(5).

Let Λ∗ denote the planner’s solution. At an interior, Λ∗ satisfies a first-order condition different

than that of an individual (see Equation 16) because the planner internalizes effects that an

individual does not. Using the fact that SΛ = −IΛ (see Equations 2 and 3) the planner’s

first-order condition is

static incentive︷ ︸︸ ︷
Uλ (Λ∗) + β [Qλ (Λ∗,Λ∗) +QΛ (Λ∗,Λ∗)] [VA (s′, i′, r′,m′)− VM ]

+ βQ (Λ∗,Λ∗) [VA,s (s′, i′, r′,m′)− VA,i (s′, i′, r′,m′)]SΛ (s, i, r,m,Λ∗)︸ ︷︷ ︸
dynamic incentive

= 0. (19)

The term “static incentive” refers to the fact that the trade-off summarized by this part of

the first-order condition deals with static considerations: the effect of Λ on contemporaneous

utility and on the probability of remaining asymptomatic between the current and the next

period. Similarly, the term “dynamic incentive” refers to the fact that this part of the first-

order condition represents the planner’s ability to internalize that a change in Λ affects the

trajectory of the disease in the future.

The envelope condition implies the following derivatives for the planner’s value of an asymp-

2The same observation can be made by inspecting Equation (16). Since Q is constant its derivative is 0 and,
therefore, U1(λ∗) = 0 which is also the solution of problem (13).
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tomatic (I useQ to denoteQ (Λ∗,Λ∗) and a prime to denote a function evaluated at (s′, i′, r′,m′)):

VA,s = βQ
[
V ′A,sSs + V ′A,iIs

]
,

VA,i = βQ
[
V ′A,sSi + V ′A,iIi + V ′A,mMi

]
,

VA,m = βQ
[
V ′A,sSm + V ′A,iIm + V ′A,rRm + V ′A,mMm

]
,

VA,r = βQ
[
V ′A,sSr + V ′A,iIr + V ′A,rRr

]
.

Consider the planner’s value of a marginal susceptible, VA,s. The marginal susceptible implies

Ss susceptible and Is infectious in the next period. Thus, the value of the marginal susceptible

is the discounted value of these changes in the stock of susceptible and infectious. A marginal

infectious implies Mi symptomatic in the next period which may die or recover. Specifically, the

marginal symptomatic implies Rm recovered individuals in the next period. From the planner’s

perspective a marginal infectious may have a positive value since it may, eventually, lead to

enough recovered to lower the probability of a meeting being with an infectious.

The differences between an individual’s first-order condition (Equation 16) and the planner’s

first order condition are two-fold. First, the static incentive of the planner comprises the term

QΛ(Λ∗,Λ∗) to represents the planner’s ability to internalize how a change in the contact rate

affects the probability that any meeting be with an infectious. This term is absent from the

individual’s first-order condition. The term Qλ(Λ
∗,Λ∗) represents how a change in the contact

rate affects the probability of meetings. It is common to both the individual and the planner’s

first-order condition. Second, the dynamic incentive is absent from the individual’s first-order

condition.

Comparing Equations (16) and (19) with their counterpart in Garibaldi et al. (2020) a few

observations can be made. First, as in their paper there are similar terms in both first-order

conditions. The differences between the individual and planner’s first-order conditions indicate

the externalities in the environment. Second, one source of externality present in their paper

but not in mine is the medical congestion externality. A contribution of the simple model I

present here is thus to emphasize how the planner’s incentive differ from the individual’s even

in the absence of considerations such as medical capacity.

I make two final remarks. First, it is immediate that the planner’s solution in the long-run,

that is once i = 0, is the same as the individual solution in the long-run: ΛR. Second, the

planner I discuss in this section does not allocate the contact rate of recovered individuals, ΛR.

I make this assumption for simplicity, and return to its implications in Section 3.2.
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3 Numbers

3.1 Calibration

The exercise I consider in this section is a numerical example to illustrate the behavior of the

model. It is not a quantitative study of the COVID-19 epidemic. A model period is a day. The

Center for Disease Control indicates that the incubation period for COVID-19 ranges from 2

to 14 days with a median of 4-5 days.3 I use 5 days and set σ = 1/5 since the expected time

before symptoms, in the model, is Eσ ≡ 1/σ.

The WHO-China joint mission on COVID-19 indicates the median time for recovery for mild

cases is about 2 weeks (3-6 weeks for patients with severe or critical disease). The time from

the appearance of symptoms to death, among the patients who have died, ranges from 2 to 8

weeks.4 In the model the expected duration before recovery, conditional on not dying, is Eρ;

the expected duration before death, conditional on not recovering, is Eγ:

Eρ ≡
(1− γ)ρ

(1− (1− γ)(1− ρ))2 and Eγ ≡
(1− ρ)γ

(1− (1− γ)(1− ρ))2 .

I choose ρ and γ to imply Eρ = 14 and Eγ = 28. This yields ρ = 0.79% and γ = 1.58%.

I set β = 0.99. I set λ` = 1 and λw = 60. At λ = 60, the 95% confidence interval for the number

of individuals met in a day is [45, 76]. At λ = 1 the 95% confidence interval is [0, 3]. I set ω

such that, in the absence of an epidemic (or equivalently for a recovered individual), work time

amounts to 40 hours per week: 1− ` = 40/112.5 This yields ω = 0.36. Given ` = 1− 40/112,

Equation (6) implies ΛR = 22.07. Thus, in the absence of an epidemic, the 95% confidence

interval for the number of individuals met in a day is [13, 32].

I follow Jones et al. (2020) and set ∆, the disutility of death, to ten times Gross Domestic

Product per capita. In this model this is 10× (1− `) where ` = 1− 40/112 as, in the absence

of an epidemic, Gross Domestic Product per capita is labor income. I set δ, the disutility of

being symptomatic, to ∆/2.

Finally, I set φ, the probability of infection in a meeting with an infectious so as to imply a

basic reproduction number of 2.5 at the start of the epidemic. The reproduction number is

3https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
4https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-

report.pdf
5I assume that one needs 8 hours per day for sleep and minimal personal care. There are, therefore, 7 ×

(24− 8) = 112 hours in a week.
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Preferences β = 0.99, ω = 0.36 ∆ = 3.57
δ = 1.78

Epidemic σ = 1/5, ρ = 0.79%, γ = 1.58%
φ = 2.2%

Social interactions λ` = 1, λw = 60

Table 1: Parameters

the number of secondary cases generated by 1 infectious in a population where everyone else

is susceptible. In the model, at the onset of the epidemics, an infectious individual’s contact

rate is ΛR until symptoms develop and that individual becomes quarantined. This takes on

average 1/σ periods. The probability that a meeting yields an infection is φ. Hence, the basic

reproduction number is φΛR/σ. This implies φ = 2.2%.

3.2 Discussion

I assume that the initial proportion of infected is 1/1000. Figure 1 shows the trajectory of the

epidemics under both the private and the planner’s solution. Figure 2 shows the corresponding

contact rate.6 Under the private response the proportions of infectious and symptomatic peak

at significantly higher levels (24% and 82%, respectively) than under the planner’s response

(3% and 35%, respectively). Under the planner’s response the proportion of infectious takes

longer to decline, however. It reaches 1/1000 (the initial proportion) on day 224 versus day

67 under the private response. Furthermore, the fraction of population remaining susceptible

at the end of the epidemic is significantly higher under the planner’s response than under the

private response: 4.8% v. 0.5%. That is, under the planner’s response 95.2% of the population

eventually gets infected while, under the private response it is 99.5% of the population.

The sole reason for the different dynamics presented in Figure 1 is the different behavior of the

contact rate displayed in Figure 2. Why does the planner’s response features a contact rate

that (i) declines more initially than the private contact rate, and (ii) overshoots the long-run

solution before settling down on it?

In Section 2.4 I indicated that the private solution for the contact rate is such that λ∗ ≤ ΛR.

The reason why a private individual does not find it optimal to ever raise λ∗ above ΛR is that

any such increase entails, at the same time, a loss of current utility since U is maximized at ΛR,

and a reduced likelihood or remaining asymptomatic. The private individual is willing to lower

6The “wiggles” in the solution are artifacts of the solution method. I solved the private and the planner’s
problems on a 40× 41× 42 grid for (s, i,m). A finer grid implies less “wiggles.”
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λ∗ below ΛR because the loss of current utility is compensated by a reduction in the probability

of becoming symptomatic. This explains the behavior of the private contact rate in Figure 2.

The planner faces similar tradeoffs but also internalizes the effect of the contact rate on the

evolution of the disease. A low contact rate early in the epidemic yields a benefit for the planner

that is not internalized by a private individual: a lower stock of infectious in the future. Because

of this added benefit the planner reduces the contact rate more than a private individual would

in the early stage of the epidemic. This is visible in Figure 2. How does a low stock of infectious

in the future benefit the planner, though? There are two mechanisms at play. First, a low stock

of infectious implies a low risk of infection for an asymptomatic—see the effect of i in Equation

(10). This is utility enhancing since an asymptomatic is then less likely to incur the cost of being

sick and/or dying. Second, with a low stock of infectious the planner can raise the contact rate

without raising infections. The planner understands, however, that some infectious eventually

recover and contribute to further reducing the risk of infection for an asymptomatic—see the

effect of r in Equation (10). These mechanisms can be interpreted as the planner using the

contact rate to hasten herd immunity which, in this model, amounts to a low (or zero) risk that

the representative asymptomatic individual becomes sick and/or dies. It is not necessary that

the contact rate overshoots its long run value for this interpretation to hold. The overshooting

itself may or may not take place depending upon parameter values. The key, here, is that the

planner internalizes the benefit of a high contact rate later in the epidemics: it contributes to

herd immunity and, thus, is utility enhancing.

In Section 2 I indicated that the planner does not choose ΛR, the contact rate of recovered

individuals. I made this assumption for simplicity. If the planner chose ΛR, it would have an

incentive to increase it during the epidemic in order to lower the probability that a susceptible

meets an infectious. This would allow the planner to avoid a drastic reduction in the contact

rate of asymptomatic. Note however, that this would come at a cost for recovered individuals

who may have to work more than is individually optimal. Thus, the planner’s objective would

have to weight the welfare of asymptomatic individuals against that of recovered individuals.

3.3 Robustness

I conduct robustness experiments with respect to σ, the probability of an infectious becom-

ing symptomatic, ρ the probability that a symptomatic recovers, γ the probability that a

symptomatic dies and, finally, with respect to R0, the reproduction number at the start of

the epidemic. Figures 3–10 show the trajectory of the epidemic for a variety of parameter

combinations. The main message from these figures is that the general patterns exhibited by

the individual and the planner’s response to the epidemic remain the same under alternative
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calibration of the main “epidemiological” parameters of the model.

4 Conclusion

In this paper I asked: why would individual incentives lead to less social distancing than is

socially optimal—and therefore why should social distancing be mandatory? I setup a model

where the cost of social distancing is reduced consumption and the benefit is a lower risk

of becoming infectious. The model reveals two source of differences between the planner’s

incentives and an individual’s. First, unlike the planner, individuals take the probability that

any meeting is with an infectious as given. Second, individuals take the evolution of the disease

over time as given. The planner internalizes that a low contact rate early in the epidemic

implies a low stock of infectious in the future; and that a low stock of infectious in the future

reduces the risk of future infections. These differences imply that the planner chooses more

social distancing early in the epidemic and obtains, as a result, a lower infection curve than

that obtained by private individuals.
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A The flow of new infections

Suppose contact rates, that is the number of people met by a given person in a period, are group specific: ΛI ,
ΛS and ΛR. Let pir be the fraction of contacts made by a member of group PI that is with a member of group
PR. Define psr, prr etc... similarly. We have∑

y∈{i,s,r}

pxy = 1 for x ∈ {i, s, r}.

The number of contacts by members of PI with members of PS is then ΛIPIpis, and it must equal the number
of contacts by members of PS with members of PI which is ΛSPSpsi. Thus, we have the following consistency
conditions

PI ↔ PS : ΛIPIpis = ΛSPSpsi

PI ↔ PR : ΛIPIpir = ΛRPRpri

PS ↔ PR : ΛSPSpsr = ΛRPRprs

Define

pxy =
ΛyPy

ΛIPI + ΛSPS + ΛRPR
.

It is then immediate that the consistency conditions above are satisfied:

ΛIPIpis = ΛIPI
ΛSPS

ΛIPI + ΛSPS + ΛRPR
= ΛSPSpsi,

ΛIPIpir = ΛIPI
ΛRPR

ΛIPI + ΛSPS + ΛRPR
= ΛRPRpri,

ΛSPSpsr = ΛSPS
ΛRPR

ΛIPI + ΛSPS + ΛRPR
= ΛRPRprs.

New infections result from a susceptible meeting with an infectious. The number of meetings made by a
susceptible is ΛSPS and a fraction psi are with other infectious. Let φ denote the probability that a meeting
results in an infection. The number of new infections in a period is then

new infections = ΛSφPSpsi = ΛSφPS
ΛIPI

ΛIPI + ΛSPS + ΛRPR

If meeting rates were identical, i.e., ΛS = ΛI = ΛR = Λ, the number of new infections in a period would be

ΛφPS
PI

PI + PS + PR
.

If susceptible and infectious people have the same meeting rate, ΛI = ΛS = Λ, and if the meeting rate of
recovered is different, ΛR 6= Λ, then the number of new infections in a period would be

ΛφPS
PI

PI + PS + PRΛR/Λ
.

B Robustness
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Figure 3: Trajectory of the epidemic – private response, various σ

Source: Author’s calculations.
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Figure 4: Trajectory of the epidemic – planner’s response, various σ

Source: Author’s calculations.
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Figure 5: Trajectory of the epidemic – private response, various ρ

Source: Author’s calculations.
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Figure 6: Trajectory of the epidemic – planner’s response, various ρ

Source: Author’s calculations.
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Figure 7: Trajectory of the epidemic – private response, various γ

Source: Author’s calculations.
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Figure 8: Trajectory of the epidemic – planner’s response, various γ

Source: Author’s calculations.
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Figure 9: Trajectory of the epidemic – private response, various R0

Source: Author’s calculations.
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Figure 10: Trajectory of the epidemic – planner’s response, various R0

Source: Author’s calculations.
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